
The Parallel-netCDF I/O Library

Robert Latham
Argonne National Laboratory

January 12, 2010

1 Synonyms

pnetcdf

2 Definition

Parallel-NetCDF provides an API for parallel access to traditionally-formatted
netCDF files. Parallel-NetCDF both produces and consumes files compatible
with serial netCDF, while providing a familiar (though not identical) program-
ming interface better suited to express parallel I/O.

3 Discussion

Before going into more detail about Parallel-NetCDF, it will be helpful to see
how it fits in the bigger picture of scientific computing and application I/O.

3.1 Background

Today’s leadership computing platforms contain hundreds of thousands of pro-
cessors. In order to efficiently utilize these computers, applications make use of
simplifying abstractions provided by tools and libraries. MPI libraries provide
a standard programming interface for parallel computation on a wide array of
hardware. Math libraries like BLAS hide the details of CPU-specific optimiza-
tions. These lower-level math and communication libraries contribute to an
overall software stack built to allow developers to focus on the science behind
their applications.

I/O performance on high-end computing platforms follows a similar story.
Performance comes from aggregating many storage devices. In fact, CPU per-
formance has consistently improved at a rate much faster than that of storage
devices. This discrepancy makes the need for parallel I/O across multiple de-
vices even more acute. Yet as the number of devices involved in I/O grows,
coordinating I/O across those devices becomes more of a challenge. In the same

1

Application

I/O Hardware

High-Level I/O Library

I/O Middleware

I/O Forwarding

Parallel File System

I/O Forwarding
bridges between app. tasks
and storage system and
provides aggregation for
uncoordinated I/O.

IBM ciod

Parallel File System
maintains logical space
and provides efficient
access to data.

PVFS, PanFS, GPFS, Lustre

I/O Middleware
organizes accesses from
many processes,
especially those using
collective I/O.

MPI-IO

High-Level I/O Library
maps application abstractions
onto storage abstractions
and provides data portability.

HDF5, Parallel netCDF, ADIOS

Figure 1: The I/O software stack.

way that communication and math libraries assist the parallel computation side
of scientific simulations, an “I/O software stack” assists data management.

The large number of storage devices mentioned above form the foundation
of the software stack. Several additional layers provide abstractions to help
make the task of extracting maximum performance accessible to applications
programmers. The programming API and data model Parallel-NetCDF presents
to the scientific programmer are conceptually closer to the tasks common to
scientific applications and hide many lower level details. Though hidden by
Parallel-Netcdf, discussing the lower levels of the software stack will provide a
better appreciation of Parallel-NetCDF’s role at the upper level.

• Storage systems contain thousands of individual devices to increase the
potential bandwidth. The parallel file system manages those separate de-
vices and collects them into a single logical unit. The file system does lack
some important features: typically file systems have no mechanism for co-
ordinated I/O, and the data model is still fairly low level for computational
scientists to use directly.

• The I/O forwarding layer typically exists only on the largest computer
systems. Applications do not interact with this layer directly. Rather,
this layer simplifies the scalability challenge: a large number of compute
nodes communicate with a smaller number of I/O forwarding nodes, and
these nodes in turn talk to the file system.

• the Middleware, or MPI-IO, layer introduces more sophisticated algo-
rithms tailored to parallel computing. This layer coordinates I/O among a
group of processes, introducing collective I/O to the stack. MPI datatypes
allow applications to describe arbitrary I/O access patterns. Applications
can use the MPI-IO layer directly, but the programming model is still
rather low-level and not a perfect fit to the needs of common applications.

• Parallel-NetCDF belongs to the High-Level I/O Library layer. Libraries
in this layer introduce concepts such as multidimensional arrays of typed
data which are better suited to scientific applications. For example, a

2

climate code can represent temperature in the atmosphere with a four-
dimensional array: latitude, longitude, altitude, and number of degrees
Celsius. Further, these libraries define the layout of data on disk. These
self-describing file formats make exchanging data with colleagues now and
in the future much easier.

3.2 History

The history of the Parallel-NetCDF project starts with Unidata’s netCDF project.
The netCDF library has long provided a straightforward programming API and
file format for serial applications. In the summer of 2002, Argonne National
Laboratory and Northwestern University started a joint effort to build a paral-
lel I/O library while keeping the best parts of netCDF. Without changing the
existing netCDF file format, Parallel-NetCDF introduced a new programming
API. This new API was not identical to serial netCDF, but would be comfort-
able to anyone familiar with the existing serial netCDF API. Section 3.3 will
contain more discussion of the Parallel-NetCDF API.

Parallel-NetCDF has since become an important tool for high-performance
I/O in the climate and weather domains. These domains have long-established
netcdf-based workflows, using netcdf datasets for archiving, analysis, and data
exchange. Since Parallel-NetCDF retains the same file format as netCDF, cli-
mate and weather codes could make changes to their simulation codes while
leaving other components of their workflow the same. Parallel-NetCDF sees
use in other domains as well: the programming API and file format make it
possible to deliver good parallel I/O performance without having to master all
of MPI-IO.

3.3 The Parallel-NetCDF API and File Format

Discussions about Parallel-NetCDF need to cover two main points: the pro-
gramming model and the on-disk data format. The API simplifies many MPI-IO
concepts while retaining several key optimizations. The on-disk format affects
both I/O performance as well as collaborations now and in the future.

If applications were to use MPI-IO directly, the “basic type” they would
build upon would be a linear stream of bytes. In contrast, Parallel-NetCDF
offers a more application-friendly model based on multidimensional arrays of
typed data. Operations on those arrays could be as simple as reading the
entire array, or a more complicated operation such as having each process write
a sub-cube representing a chunk of the Earth’s atmosphere. In addition to
operations for manipulating data, the API contains routines to annotate the
data in the file or the file itself. Such annotations may include timestamps,
machine information, experiment or workflow information, or other provenance
information to better understand how an application produced the data in this
file. Section 3.4.1 goes into more detail about the programming interface as well
as how Parallel-NetCDF interacts with the underlying MPI-IO library.

3

netCDF File "checkpoint07.nc"

< Data for "temp" >

< Data for "surface_pressure" >

Variable "temp" {
 type = NC_DOUBLE,
 dims = {1024, 1024, 26},
 start offset = 65536,
 attributes = {"Units" = "K"}}

Variable "surface_pressure" {
 type = NC_FLOAT,
 dims = {512, 512},
 start offset = 218103808,
 attributes = {"Units" = "Pa"}}

netCDF header describes

the contents of the file:

typed, multidimensional

variables and attributes

on variables or the dataset

itself.

Data for variables is stored

in contiguous blocks,

encoded in a portable binary

format according to the

variable's type.

O
ffset in

 File

Double temp

26

1024

1024

Float surface_pressure

512

512

Application Data Structures

Figure 2: On the left, how an application views netCDF objects. On the right,
how netCDF and Parallel-NetCDF store those objects on disk

In addition to the programming interface, the file format plays a major role
in how useful Parallel-NetCDF can be to application groups. Parallel-NetCDF
applications create a self-describing, portable file with support for embedded
metadata. API routines allow programs to query the contents of data files
without any prior knowledge of the contents. The structure of the datasets
extends to the representation of bytes on disk: even if a dataset is moved to a
different machine, the library will still be able to understand that file. The IBM
BlueGene system, for example, has a 32-bit, big-endian architecture, while the
Cray XT5 has a 64-bit little-endian architecture. Despite these differences, files
created on one can be read on the other and vice versa.

Figurer̃effig:netcdf-overview depicts a simple Parallel-NetCDF application.
A climate code wishes to create a checkpoint file to store some key pieces of
information. Atmospheric temperature is stored as a three-dimensional array
of double-precision floating point values. Barometric pressure at the Earth’s
surface requires only two dimensions, and only single-precision floating points.
Further, the application wants to ensure future consumers of this dataset know
which units these variables use. It stores this information as an attribute on
each variable. On disk, the dataset contains a small header describing the size
and type of both variables and any attributes, followed by the actual data for
the variables. This fairly simple file format comes with some restrictions, but
the trade-off results in efficient file accesses for parallel I/O.

Parallel-NetCDF uses the exact same file format as netCDF, making it easier
for applications groups to adopt Parallel-NetCDF. A programmer can change
the computationally intensive simulation code to use Parallel-NetCDF while the
other components of the workflow (e.g. visualization, analysis, archiving) can
continue to use serial netCDF.

3.4 Annotated Examples

Parallel-NetCDF shares many netCDF concepts, but, as mentioned previously,
uses a slightly different API. Some simple example programs should make the

4

1 #include <mpi.h>
2 #include <pnetcdf.h>
3
4 int main(int argc , char **argv) {
5 int ncfile , nprocs , rank , dimid , varid1 , varid2 , ndims =1;
6 MPI_Offset start , count =1;
7 char buf [13] = "HelloÃWorld\n";
8
9 MPI_Init (&argc , &argv);

10 ncmpi_create(MPI_COMM_WORLD , "demo.nc",
11 NC_WRITE|NC_64BIT_OFFSET , MPI_INFO_NULL , &ncfile);
12
13 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
14 MPI_Comm_size(MPI_COMM_WORLD , &nprocs);
15
16 ncmpi_def_dim(ncfile , "d1", nprocs , &dimid);
17 ncmpi_def_var(ncfile , "v1", NC_INT , ndims , &dimid , &varid1);
18 ncmpi_def_var(ncfile , "v2", NC_INT , ndims , &dimid , &varid2);
19 ncmpi_put_att_text(ncfile , NC_GLOBAL , "string", 13, buf);
20
21 ncmpi_enddef(ncfile);
22
23 start = rank;
24 ncmpi_put_vara_int_all(ncfile , varid1 , &start , &count , &rank);
25 ncmpi_put_vara_int_all(ncfile , varid2 , &start , &count , &rank);
26
27 ncmpi_close(ncfile);
28 MPI_Finalize ();
29 return 0;
30 }

Figure 3: A basic Parallel-NetCDF program using the standard interface. For
brevity, error checking/handling has been omitted.

differences clear.

3.4.1 The Standard Interface

Figure 3 contains a full, correct Parallel-NetCDF program to create a simple
dataset. This program, though brief, demonstrates many key features of the
library.

Because Parallel-NetCDF relies on MPI-IO, the program must include the
mpi.h header file (line 1) and initialize (line 10) and finalize (line 30) the MPI
library.

The ncmpi create routine (line 11) adds two arguments to netCDF’s nc create:
a communicator and an MPI Info object. These two arguments do expose a bit
of the underlying MPI library, but give the programmer some flexibility and the
ability to tune operations if needed.

Parallel-NetCDF, like netCDF, has a bi-modal interface: when creating a
dataset, an application starts off in define mode, when it must first describe what
variables it will write, the size and type of those variables, and any attributes.
This example defines a single dimension (line 17) and assigns that dimension to
two variables (line 18 and 19).

Datasets can contain a great deal of metadata. Both variables and dimen-

5

sions have human-readable labels. In addition to those labels, attributes may
be defined and placed on dimensions, variables, or the dataset itself. Line 20
places an attribute on the entire dataset.

In the example, line 22 calls ncmpi enddef to switch from define mode to
data mode. By asking the programmer to pre-define variables and attributes,
the library can allocate space with very little overhead. Re-entering define mode
can potentially trigger a very expensive re-writing of the dataset. For a large
class of problems, however, it is known ahead of time which information will be
written out.

Lines 25-26 do the actual work of storing information into the dataset.
Parallel-NetCDF provides one set of functions for uncoordinated collective I/O,
and another parallel set for coordinated collective I/O. This example uses the
collective version (as shown by the all suffix). Every MPI process participates
in these writes, each writing out its MPI rank. In a traditional serial netCDF
program, each rank would send data to a master process and this process would
in turn write out the information. This “send-to-master” model quickly be-
comes untenable as the number of MPI processes increases and as the amount
of memory available to each MPI process gets smaller.

The collective Parallel-NetCDF routines in turn call collective MPI-IO rou-
tines. MPI-IO collective routines can use powerful optimizations such as two-
phase I/O ([?] or data shipping ([?]. It’s possible to use independent I/O with
Parallel-NetCDF, but the opportunities for optimization are greatly limited in
that case.

Once executed, this example will produce a file “demo.nc”. This dataset will
contain two variables, as can be verified with either netCDF or Parallel-NetCDF
utilities.

3.4.2 The Flexible Interface

The Parallel-NetCDF standard interface shares much with the serial netCDF
interface. The function name explicitly states if the operation is a read or write
(put or get), the type of access (e.g. var, vara), and the type (e.g. int,
float, double. For example, the function ncmpi put vara int clearly writes
integers into a sub-array.

Parallel-NetCDF allows for even more flexibility in describing an applica-
tion’s datatypes. In Figure ??, a write operation from Figure ?? is converted
to the Flexible interface. The datatype in this example is trivial (MPI INT), but
MPI datatypes allow an application to describe how data is laid out in memory
and then send along all that information in a single call. A more complicated
MPI datatype might, for example, write out all the data in a multi-dimensional
array while skipping over the “ghost cells” used to optimize communication but
which are just copies of data belonging to other MPI processes. (XXX: figure
of array with ghost cells?)

6

/* function prototype */
int ncmpi_put_vara_all(int ncid, int varid,

/* start and count describe access in file */
const MPI_Offset start[], const MPI_Offset count[],
/* ’buf’ ’bufcount’ and ’datatype’ describe data in memory */
const void *buf, MPI_Offset bufcount, MPI_Datatype datatype);

...
start = rank;
ncmpi_put_vara_all(ncfile, varid1, &start, &count, &rank, count, MPI_INT);
...

Figure 4: Prototype for and usage of one of the flexible mode routines.

1
2 async interface mode code goes here

Figure 5: async mode code

3.5 Parallel-netCDF limitations

3.6 Tuning Parallel-NetCDF

3.7 Related Works

4 Related Entries

• Parallel-NetCDF fits squarely under the topic of Parallel I/O.

• It is closely related to HDF5, the first high-level I/O library and a project
from which Parallel-NetCDF learned much.

• Parallel-NetCDF sees most use in Distributed Memory environments, par-
ticularly those using message passing (though nothing precludes shared
memory platforms from using Parallel-NetCDF effectively).

• Benchmarking ties in to Parallel-NetCDF in that correctly benchmarking
Parallel-NetCDF requires understanding the entire I/O software stack.

• Weather and Climate Simulation makes use of Parallel-NetCDF, partic-
ularly as per-node memory sizes become smaller and smaller. With less
memory per-node, parallel approaches to I/O become important not just
for performance, but to actually be able to run on these systems at all.

7

5 Bibliographic Notes and Further Reading

The Paralllel-NetCDF web site is www.mcs.anl.gov/parallel-netcdf. The
site hosts pointers to additional Parallel-NetCDF papers and projects as well as
links to production releases and the latest code.

The Parallel-NetCDF community of users and developers communicates on
the parallel-netcdf@mcs.anl.gov mailing list.

Parallel-NetCDF developers regularly give tutorials and workshops covering
the library.

References

Acknowledgments

This work was supported by the U.S. Dept. of Energy under Contract DE-
AC02-06CH11357.

8

